Solutions
- Molecular Breeding Solutions of Citrus
- Molecular Breeding Solutions of Rice
- Molecular Breeding Solutions of Wheat
- Breeding for Trait Improving Ornamental Flower
- Molecular Breeding Solutions of Corn
- Spores Breeding Solutions
- Molecular Breeding Solutions of Potato
- Breeding of Ornamental Flower
- Breeding of Cut Flowers
- Breeding of Carnations
- Breeding of Dianthus caryophyllus L.
- Breeding of Paeonia suffruticosa
- Breeding of Lilium
- Breeding of Chrysanthemums
- Breeding of Eustoma grandiflorum
- Breeding of Anthurium andraeanum
- Breeding of Rose
- Breeding of Paphiopedilum
- Breeding of Gerbera hybrida
- Breeding of Delphinium grandiflorum
- Breeding of Narcissus
- Breeding of Alstroemeria aurea Graham
- Breeding of Caladium Vent
- Breeding of Antirrhinum majus
- Breeding of Pot Plants
- Breeding of Bearded Irises
- Breeding of Cyclamen
- Breeding of Pelargonium
- Breeding of Rhododendron
- Breeding of Oncidium
- Breeding of Cymbidium goeringii
- Breeding of Dendrobium officinale
- Breeding of Hippeastrum striatum
- Breeding of Japanese Gentians
- Breeding of Viola tricolor L.
- Breeding of Jasmine
- Breeding of Polianthes tuberosa L.
- Breeding of Schlumbergera truncata
- Breeding of Ornithogalum
- Breeding of Ruta graveolens L.
- Breeding of Onagraceae
- Breeding of Garden Plants
- Breeding of Camellia japonica
- Breeding of Nelumbo nucifera
- Breeding of Agapanthus africanus
- Breeding of Snapdragon
- Breeding of Bellflower
- Breeding of Bougainvillea
- Breeding of Brassica napus
- Breeding of Camellia nitidissima
- Breeding of Tagetes erecta
- Breeding of Chimonanthus praecox
- Breeding of Clematis florida
- Breeding of Lagerstroemia indica
- Breeding of Dahlia
- Breeding of Gladiolus hybridus L.
- Breeding of Helianthus annuus
- Breeding of Ipomoea nil
- Breeding of Kalanchoe
- Breeding of Lavandula
- Breeding of Phalaenopsis equestris
- Breeding of Tulipa gesneriana
- Breeding of Muscari aucheri
- Breeding of Lonicera japonica
- Breeding of Osmanthus delavayi
- Breeding of Paeonia
- Breeding of Prunus mume
- Breeding of Salvia splendens
- Breeding of Syringa oblata
- Breeding of Zantedeschia albomaculata
- Breeding of Petunia hybrida
- Breeding of Osteospermum
- Breeding of Euphorbia pulcherrima
- Breeding of Hemerocallis
- Breeding of Lycoris
- Breeding of Freesia
- Breeding of Hosta
- Breeding of Rhododendron simsii
- Breeding of Cut Flowers
- Molecular Breeding Solutions of Sorghum
- Molecular Breeding Solutions of Millet
- Molecular Breeding Solutions of Soybeans
- Molecular Breeding Solutions of Rape
- Molecular Breeding Solutions of Cotton
- Molecular Breeding Solutions of Barley
- Molecular Breeding Solutions of Sweet Potato
- Molecular Breeding Solutions of Pea
- Molecular Breeding Solutions of Flax
- Molecular Breeding Solutions of Alfalfa
- Molecular Breeding Solutions of Tomato
- Molecular Breeding Solutions of Sunflower
- Molecular Breeding Solutions of Peanut
- Molecular Breeding Solutions of Tobacco
- Molecular Breeding Solutions of Vegetables
- Molecular Breeding Solutions of Medicinal Plant
- Molecular Breeding Solutions of Flowers
Molecular Breeding Solutions of Tobacco
INQUIRYIntroductions
Tobacco (scientific name: Nicotiana tabacum L.) is a self-pollinating crop of Solanaceae, Solanaceae, Nicotiana, annual herb. Tobacco is native to South America and is a thermophilic crop, which is more sensitive to temperature. Different temperature conditions have a greater impact on the quality and yield of tobacco. High-quality tobacco requires lower temperature in the early stage and higher in the later stage during the growth period. Tobacco is one of the most widely grown non-edible cash crops, a source of income, a model organism for plant molecular research, and a raw material for industry. The whole tobacco plant can also be used as pesticides and insecticides, as well as medicinal, as anesthesia, sweating, sedation and emetics.
Tobacco molecular breeding started late, and the development of breeding strategies based on conventional breeding is very slow. At this stage, conventional breeding techniques are the mainstay, and molecular breeding methods are supplemented to promote the close integration of biotechnology and conventional techniques, optimize breeding procedures, and improve breeding efficiency. Improve existing excellent varieties, cultivate breakthrough characteristic varieties, make new varieties outstanding in aroma, flavor and other aspects, and have important disease resistance, and gradually cultivate low-hazard tobacco varieties.
Solutions
Lifeasible has contributed many years of dedicated work to the exploration and optimization of modern breeding methods of tobacco, proud to provide competitive molecular breeding services for tobacco, and provide you with the best solutions to carry out your research projects.
Breeding goals | Trait improvement | Molecular breeding technology |
---|---|---|
Insect and herbicide resistance | Mosaic disease, bacterial wilt, black stem disease Soil silkworms, locusts, stink bugs, aphids |
|
Resistance to adversity | Drought tolerance Water logging tolerance Heat tolerance |
|
High quality | High quality High nicotine Low tar |
※ Service project is constantly updated, please contact us for more up-to-date and relevant information.
Lifeasible is oriented to national strategic needs and people's livelihood needs, relying on a technology platform to establish a comprehensive service center in the agricultural field, and attaching importance to basic technology and new technology research. The scope of services covers molecular biology, sequencing, genetic marker development, bioinformatics analysis and other crop molecular breeding related biotechnologies. If you want to know more, please contact us immediately.
※ For research or industrial use.
Online Inquiry